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COMMENT 

The renormalisation group in the large-n limit for the 
vectorial paramagnon problem at T = 0 
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$ Gruppo Nazionale di Struttura della Materia, Salerno, Italy 
5 Istituto di Fisica della Facoltit di Ingegneria, Universitfi di Napoli, Italy and Gruppo 
Nazionale di Struttura della Materia, Napoli, Italy 

Received 2 June 1980 

Abstract. We use the extension of the Ma RG approach to quantum functionals in the limit 
n -*a to obtain non-perturbative information for quantum systems at T = 0, restricting 
ourselves to the n-vector paramagnon problem. 

Recently, considerable attention has been devoted to the study of the critical behaviour 
of quantum systems at zero temperature in terms of an appropriate extension of the 
Wilson renormalisation group (RG) approach (BCal-Monod 1974a, b, Hertz 1976, 
Gerber and Beck 1977, De  Cesare 1978, Busiello and De Cesare 1979,1980). In many 
cases, for T + 0 a dimensional crossover d + d + z appears in the sense that the critical 
exponents of a d-dimensional quantum system at T = 0 are identical to the one for a 
(d + 2)-dimensional classical system, where the parameter 2 depends on the way in 
which the Matsubara frequencies enter the representative quantum functionals. 

An unusual behaviour appears for bosonised systems at T = 0 (De Cesare 1978); it 
cannot be explained by means of a simple dimensional crossover, rather in terms of a 
more complex crossover process (d, n )  + (d, = d + 2, n,  = n - 2 2 )  involving the dimen- 
sionality of the order parameter too (Busiello and De Cesare 1979, 1980). However 
the previous results are valid only to the first or second order in E = 4 - (d + 2 ) .  Of 
course non-perturbative RG solutions should be very useful for clarifying the dimen- 
sional crossover phenomenon and physical interpretation of the unusual behaviour of 
bosonised systems at T = 0. For classical systems an exact non-perturbative realisation 
of the RG approach exists; this is the case when the number n of the order parameter 
components goes to infinity (Ma 1973). Therefore non-perturbative information for 
quantum systems at T = 0 can be obtained by using an appropriate extension of the Ma 
RG approach to quantum functionals in the limit n + 00. In this paper we restrict the 
extension to the n-vector paramagnon problem at T = 0 in the large-n limit. The results 
can be considered as a complement of the Hertz results to first order in E = 1 - d (Hertz 
1976), and can have some relevance also for the more realistic case of finite n (Hertz 
and Klenin 1977). The general version of the Ma RG approach for other quantum 
functionals and the analysis of the critical behaviour for several n-vector quantum 
systems at T = 0 for n +CO will be given in full detail elsewhere. 

For the description of interacting paramagnons in a system of itinerant electrons 
close to the ferromagnetic instability, a quantum functional X{+} can be derived (Hertz 
1976, Hertz and Klenin 1977) by using the Hubbard-Stratonovich transformation 
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(Hubbard 1959, Stratonovich 1957). The partition function 2' of the system is 
expressed as a functional integral of exp(-Re($}) over an n-vector variable $(x, T )  = 
{$"(x, 7); a = 1, . . . , n} at each site x. In terms'of dimensionless quantities only, 

with 

O<lw,l<l 

where un = 27rn/p (n  = 0, * l ,  *2, . . .), P = 1/T, U($') is a power series in $2 and 

n 

U = l  
I ~ q w , I ' =  c l$;wnI2. 

Note that both in wavevector and frequency spaces a natural cut-off is assumed (Hertz 
1976). 

As usual, the RG transformation Rb is globally defined by 

(4) 

where, as a first step, we have separated the paramagnon fields in two parts involving 
small wavevector components and frequencies and large wavevector components or 
frequencies, respectively: 

exP(-X'{$'})q I r ' = l  ir qWn I-I' WL" eXP(-Z{$o+$d)) ~ ~ ( x , s ) - e ~ ' ~ , ' " ( b - ' x , b - ' s )  

T)'$g(X, T ) + d ' ? ( X ,  T ) ,  

In (4) and ( 5 )  

and 
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Now we proceed in the same spirit as Ma (1973) for classical systems, and in the large-n 
limit we approximate 

So, the multiple integral in (4) can be evaluated by transforming to the new variables 
{N,,,,,"}. In the large-n limit one has 

where 

The last integral can be approximated by the maximum of its integrand, and we have 

and Nq,,, the solution of the equation a W/8Nq,, = 0, is determined by the equations 

with r ( $ ' )  = dU($2)/d$2. 
Finally, according to the transformation (4), we have 

where 
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The exact RG recursion relation, conveniently expressed in terms of t($'), is 
(dropping the prime in 4') 

Note that, apart from a different definition of p,  the RG equation (16)1 is obtainable from 
the classical one with the dimensional shift d + d + 3. For temperature T # 0, where 
only the frequency wo = 0 contributes (p' = b-'p + 0 for b + 03 and Am' = 27r/p'+ CO) ,  it 
is easy to show that the Ma classical equations immediately follow from (16).  

Let us consider now the case T = 0 when all the frequencies contribute (quantum 
limit). 

For p in ( 1  6 )  we have 

where Kd = 21-d.rr-d'2/r(d/2). 

which t'($') will approach a finite fixed point t*($') as b + CO, is 
The necessary condition for criticality, which determines the critical surface on 

(18)  ti = t(N,) = 0 

where 

It is to be noticed that in the present quantum case, N,(d)  > 0 is defined for any d > 0, in 
contrast with the classical value N, = nKd/(d - 2) .  

For t near or on the critical surface, for d > 0 and b >> 1, from equation (17)  we 
obtain the relation 

q 2  
1 q 3 + 1  b (L2 d + l  -=1+6bd- ' -  

In 2 + 9 [ ( d  + l ) /3] ( !0  dq 4 d  In q3 +qt'+ 1 ' 1 1  dq 4 d  In -) NC 4 + t  
where the parameter 4 is defined so that 

( N  - N,) / N, = 41 b ' << 1, N = p + b-(d")42, 

Equation (20) ,  which differs from the corresponding classical one (Ma 1973), can be 
utilised to determine the finite fixed points of the transformation R b ,  i.e. the solutions of 
the integral equation t*(i,b2) = b2t*(p* + b-'d'1'$2) with p* = p( t* ) ,  and the critical 
behaviour of the n-vector paramagnon problem in the large-n limit. 

For d < 1 there exists a non-trivial fixed point t*(1L2) < CO determined as a function of 
$ 2  by the equation 

(22)  
m d + l  1 q3+1 1 -  IL2 -= 

N, In 2+93[(d + 1) /3](10  dqqd In q3+q t*+  1 

Of course the dimensionality region 0 < d < 1 has no physical relevance (Hertz 1976). 
However, it is also interesting to determine the critical exponents for d < 1 in order to 
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verify explicitly that in the Ma quantum RG approach also the crossover d -+ d + 3 is 
realised. 

If tl = t(Nc) # 0, for d < 1 and b >> 1, equations (20)  and (22 )  give 

and for t' - t* << 1 we have 

with 

Finally, the critical exponents are 

rl =o ,  1 1  z = 3 ,  U = - = -  
A 1  d + l '  

d + 5  a=- Y = d + l '  d + l '  2' d + l '  
1 p = -  d - 1  a =- 2 

which are just obtainable from the classical one (spherical model) for 2 < d < 4, with the 
dimensionality shift d -+ d + 3. 

Let us now consider the case d > 1. Firstly, assuming tl = 0, simple considerations 
based on equation (20 )  indicate that we must have t'bd-' = 0 ( 1 )  for b -+ 00, and 
therefore the Gaussian fixed point t*(t,b2) = 0 is approached for d > 1. Then, if tl # 0 
and b >> 1 ,  for small t' we have from equation (20 )  

and solving for t ' ,  we obtain 

with 

11=2, LJ = l / A  1 = 5, A 2  = 1 - d < 0.  (29 )  1 

So, for d > 1 the Landau classical exponents are correct. 

surface 
Finally, in the marginal case d = 1 ,  as for classical systems, we find that on the critical 

b+oo 
t'- t* K lim (In b)-' = 0 (30 )  

b+oo 

and also at d = 1 there exists a trivial fixed point, but logarithmic corrections arise, as 
easily follows from equation (20).  In conclusion, for the n-vector paramagnon problem, 
we find that in the large-n limit also the dimensional crossover d -+ d + 3 occurs for 
T + 0 with the shift d* = 4 -+ d* = 1 of the borderline dimension d*, in agreement with 
the perturbative RG analysis by Hertz (1976).  Finally, a relevant consequence of the 
dimensional crossover is to extend, at any dimensionality d > 0, the RG in the large-n 
limit for the paramagnon problem at T = 0, in contrast with the Ma classical analysis 
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which is valid for d > 2. This is a characteristic common to other quantum systems for 
which we have d* > 1 (d* = 2 ,3 ,  . . .), and gives the possibility of exploring their RG 
properties in the large-n limit also for dimensionality d G 2. 
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